IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Superconducting correlation in the one-dimensional t- J model with anisotropic spin

interaction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 831
(http://iopscience.iop.org/0305-4470/30/3/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.112
The article was downloaded on 02/06/2010 at 06:11

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 831-840. Printed in the UK PIl: S0305-4470(97)77471-7

Superconducting correlation in the one-dimensionak-J
model with anisotropic spin interaction

J Shiraishi, Y Morita and M Kohmoto

Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi Minato-ku, Tokyo 106,
Japan

Received 27 August 1996

Abstract. A variant of the one-dimensional/ model with anisotropic spin interaction is
studied by the nested algebraic Bethe ansatz method. The gapless charge excitations and the
gapful spin excitations are obtained. It is shown that the singlet-superconducting correlation
dominates in the low-density region by applying the finite-size scaling analysis in the conformal
field theory.

In these years, strongly correlated electron systems have drawn much attention. It is partly
caused by the discovery of the copper—oxide Higlsuperconductors. The one-dimensional
strongly correlated electron systems play an important role in the study of them. It is partly
because some of them can be solved exactly and the non-perturbative results thus obtained
contain some of the essential properties of the strongly correlated systems.

Besides the Hubbard model [1-3], the/ model [4] is regarded as one of the most
basic models which contains the essence of strong correlation. The Hamiltonian is

T oy o1
Hiy = Z [ —t Z ,P(C;LUCJ‘U + le'o.cio')P + J(SfS; + Si} Sj} + SiZS; _ 4ninj>]
(i,) o=1,]

wheren's are the number operators given by= n;y +n;, = cj'Tc,-T + CL% and the spin
operators arest = 23", ;cl ok sc;s with the usual Pauli matrices’s. The Gutzwiller

projectorP = ]_[le(l—n”nu) restricts the Hilbert space by forbidding double occupancies
and hence represents strong correlation. In one dimension, the exact solution was obtained
for the supersymmetric caser(Z J) [5-8] using the Bethe ansatz method. The long-
distance behaviour of the correlation functions was also investigated by applying the finite-
size scaling analysis in the conformal field theory to the excitation spectra obtained by
the Bethe ansatz method [9]. It was shown that the superconducting correlation does not
exceed the others such as the spin-density wave (SDW) and the charge-density wave (CDW)
correlations at any filling. However, the region where the superconducting correlation
is dominant was found between the low-density supersymmetric region and the ‘phase-
separated’ regionJ( > t) by numerical diagonalization for finite clusters [10]. Since the
numerical results have ambiguity due to the finite-size effect, it is highly desirable to have
exact results.
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In this paper, we study a one-parameter family of one-dimensional correlated electron
systems which includes the ordinary supersymmetticmodel. The Hamiltonian is

) ) ) B A
Hiy =) [— Y P(clyCitio + €)1, Ci0) P+2 (SZ\ St 87 St + ASS iz+1—4”i”i+1>

l

+n(Siniyr —niSh ) + 2An,-i| )

where A? — 2 = 1 and we parametrize them as= coshy andn = sinhy(y € R-o)t.
Wheny = 0, our Hamiltonian reduces to the ordinary supersymmetrianodel. When the
number of electrons coincides with the number of lattice sites, our model becornvestl?;ae

XXZ spin chain. The Hamiltonian (1) commutes with the transfer matrix of the solvable
two-dimensional classical lattice model associated with the supersymmetric quantum affine
superalgebrd]q(sl/(é|\l))(q = ¢), which is a special case of the model given by Perk
and Schultz [11,12]. Thus, one could say that the Hamiltoniangisupersymmetric’.

The ground state, the excitations and the correlation functions are obtained by the nested
algebraic Bethe ansatz method, the finite-size scaling analysis in the conformal field theory
and the numerical diagonalization for small clusters. We find that there is always a finite
excitation gap in the spin sectosflin gap), and the superconducting correlation dominates

in the low-density region in contrast to the ordinary supersymmetfienodel. In our study,

we encounter the problem of finding suitable distributions of the roots of the Bethe ansatz
equation which correspond to the low-energy excitations. For the usual supersynetric
model, an ansatz was proposed for the problem and the validity was confirmed by comparing
the results with those from numerical studies [5-8]. An ansatz is also proposed in our case
and the validity is established by the help of the numerical-diagonalization technique.

The third term of the Hamiltonian (1) breaks the parity invariance. This parity-breaking
term is necessary for the sake of the integrability. The relation between the spin gap and the
parity-breaking term is clarified in our study. It is investigated by diagonalizing the system
without the parity-breaking term numerically. It is confirmed that the spin gap exists even
for the system without the parity-breaking term. This means that the spin gap is not a
special feature of the exactly solvable case but it may happen generally for non-integrable
cases.

This article is organized as follows. In section 1, the Bethe ansatz equations are given.
The ground state is obtained in section 2, the charge and the spin excitations are studied in
section 3 and 4. The critical exponents of correlation functions are discussed in section 5.

After finishing this work, the authors noticed the works by Baeéal [23—25] in which
the critical exponents of the anisotropid model were obtained by the Bethe ansatz. They
used the same hypothesis as ours in solving the Bethe ansatz equations. In their papers,
the validity of the hypothesis is not discussed. In this work, however, we have confirmed
this hypothesis by using the numerical-diagonalization technique. Moreover, the study of
the Hamiltonian without the parity-breaking term is not discussed in their works, which
cannot be done by the Bethe ansatz technique. We investigated this problem by numerical
diagonalization for small clusters.

1 The Hamiltonian (1) can be transformed to that for the dopé&d-model with broken parity: Hxy =
Y= P(c'jacﬁ-lo + €41, Cic)P + 2(SE S5, + STS) ) — (€ nipni1y, + €7V nipnigay)].
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1. Bethe ansatz equations (BAES)

The diagonalization of the Hamiltonian (1) with periodic boundary condition reduces to
solving the coupled algebraic equations (BAEs) derived by the nested algebraic Bethe ansatz
technique. They are

Sin(p"i‘i)/) L M Sin(p-—Aﬂ+ly) .
(sm(j—'z) =DV 5 J,_A — j=12....N @)
pj = 27) 321 Sin(p; 1)
ﬁsm(Aa_pﬁ%y) =—]M[Sin(A“_Aﬂ+iV) a=12....M (3)

i1 SIN(Ag — pj — 37) 3.1 SiN(Aq — Ag —iy)

where L is the number of lattice sitesy is the number of electrong/ is the number of
down-electrons (magnons);s are the quasi-momenta of electrons axid are the magnon
rapidities [13].

Hereafter we take the following ansatz for the ground state and the elementary
excitations: A’s are one-string§A, € Rjea =1, ..., M} and p’'s consist of the one-strings
{pj =u; e Rlj =1,...,N — 2M} and the two-stringgp> = A,+iy/2la = 1,..., M}.
Note that the real parts of the two-strings coincide with the magnon rapidities and, if
M = N/2, there are no degrees of freedom for one strings of the quasi-momenta. This is
essentially the same ansatz established in [6-8]. In our case, howegseandu’s are in
the interval |7, 7] due to the periodicity of the BAEs (2), (3). By taking the logarithm
of the BAEs, we have

M
L¢(u,,g)=2ni1j+2¢(u<,-—/\ﬂ%) j=1...N-2M @)
=1

N-2M M
Lo (Mg, y) = 271y + ,; ¢<Aa —u;, %) +;¢(Aa —Apy) a=1...M

)
whereg (z, ) = log 305 f, and{/;|j = 1,2, ..., N — 2M} is a set of integers (or half-
odd integers) ifM is even (or odd) and the sgf, |« = 1,2, ..., M} is a set of integers (or

half-odd integers) ifN + M + 1 is even (or odd). We order the quantum numbeéssand
J's according tol; > I;11 and Jy, > Jy41.

In the thermodynamic limitL, N — oo, the distributions ofA’s can be described by
the continuous density given bio(Ay) = liIML vy 00 1/(Agr1 — Ag). The energy and
momentum up to @) are

N N—2M
E = isinhquﬁ/(pj, g) = isinhy(L / dA p(AHYG'(A', y) + Z ¢/<uj, 7;)) (6)
j=1 j=1

and
N-2M

N
i . Z s / / ’ . ) Z
P—lj;qs(p], 2) =i LfdA p(A)(A,y) +i ; ¢(u.5). @
The integral intervals in (6) and (7) will be discussed in the following sections.

1 The branch of the logarithm is fixed by the requirements th, «) = iz, and Im¢(x, @) is a continuous
monotonic decreasing function A /2 < x < /2.
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Figure 1. Ground-state energy per site as a function of electron densityhe full lines are
obtained by solving (8). We also performed direct numerical diagonalizations of the Hamiltonian
for L = 14 with y = 2.0, 10 and 05. The results are plotted iy, + and ¢ respectively.

2. Ground state

We setN to be even for simplicity. Since the spin interaction is anti-ferromagnetic, the total
S¢ for the ground state is expected to be zero. This can be achieved by g¢ttingv/2,
i.e. for the sector without one-stringg = u;. We also require that the momentumto
be zero. We propose the following ansatz is: the distributions of/’s for the ground
state is restricted afnax = [Jo| = Jmin, WhereJmax = L=t and Jip = =31,

In the thermodynamic limit, we assume thats are distributed only in the regions
[-7/2,—Q,] and [Q,, 7/2] in accordance with the distribution of the quantum numbers
J's. BAEs (4) and (5) are reduced to

-0 7/2
2mipg(A) = —¢'(A, y) + [ +/Q ]dA’ pg(ANP' (A=A y)  (8)

—/2

where Q, is determined by

[ o +/ﬂ/z] dA p(A) = N2 _n
—7/2 0, L 2
The ground-state energy, is given by
—Q, /2
E, :iLSinhy|: _n/2+/‘Qy:|dA,og(A)¢’(A,y). 9

These equations can be solved numerically for arbitrary fillingrhe results are given in
figure 1.
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3. Charge excitations

The charge excitations are those caused by the replacements of' shehile keeping

M = N/2 namelyS* remains to be zero. Thus the elementary excitations for the charge
sector consists in making a jump (hole) at the poitand putting a quantum numbéy,

at a previously unoccupied region [7, 8]. In the thermodynamic limit, BAEs (4) and (5) are
reduced to

. / 2ri 1
2mipe(A) = —¢/(A,y) = “5(A = Aw) + 29/ (A = Ap.y)

/2
[/ 2 / }dA/pc(A')fﬁ/(A—A’, ¥) (10)

retaining terms up to @.71), whereA, and A, denote the position of the hole and particle
in the sea of two strings associated with the quantum nuniheand J,, respectively.Q.
is determined by

/2 _
[/ / deApC(A)z(NZ)/Z.
—n/2 L

For convenience, we decompo%(A) into the regular part and the singular part as
pe(A) = peo(A) = 7 pea(A) — F8(A — Ay), Wherepo(A) satisfies

/2
2tipo(A) = —¢'(A. y)+[/ . / }dA’pcom’W(A—A’,y). (11)

For p.1(A), we have
27ipe1(A) = @' (A — Ap,y) — ¢'(A = Ay, y)

/2
U . / }dA/pd(Aw(A—Acy). (12)

The excitation energh E from the ground state and the momentutrare given by

/2
AE = |S|nhy(¢(Ap,y) ¢<Ah,y>—[/ . / }dApde(A,y)) (13)

/2
—|<¢><Ap,y) ¢><Ah,y>—[/ . / ]dApcl(AM»(A,y)). (14)

Solving (12) numerically, the dispersion relatlon for the elementary charge excitations was
obtained. The results for = 2 andn = 0.45 are shown in figure 2. The results for other
parameters do not change in an essential manner, naimelgharge excitation is always
gapless

4. Spin excitations

The spin excitations can be considered as excitations coming from destroying the two-strings
p¥'s and creating one-stringss. To study the elementary ones, let us consider the case
of M = N/2 — 1 magnons. We assume that, in the sea of the quantum nunjilsetisere

are no jumps [7, 8]. Then, in the thermodynamic limit, BAE (5) becomes

ZnipS(A)=—¢/(A»V)+E¢/( —“172)+ ¢( _”2’9

/2
[/ . / }dA/mA’W(A—A’,w (15)
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1 T

AE

Figure 2. Dispersion of the elementary excitations in the charge sectar fer2 andn = 0.45.
Sufficiently many points in the continuous spectrum are shown. The momeRtisyperiodic
with period 2r. The gapless points are &= 0, 2k and 2r — 2kp.

whereu; andu, are one-string quasi-momenta, a@q is determined by
- /2 N-—-2)/2
[ +/ ]dApS(A)z()/.
-2 J o, L

It is convenient to decompose (A) into contributions of @1) and QL) as p,(A) =
0s0(A) — %psl(A), wherep,o(A) satisfies the same equation as (11) obtained by replacing
all the suffixesc to s. Then the integral equation far,1(A) is obtained as

2ipa(8) = —¢/ (A —un ) = ¢/ (A w2, 7)

2 2
_Q.s 7'[/2
+[ + f } dA’ ps1(A)@' (A — A, y). (16)
—n/2 [0}
The excitation energy\ E from the ground state and the momentuhare
— Qs /2
iei ’ Z ’ Z _ /
AE = isinhy (¢ (m2.5) + ¢ (u2 3) [ ot / N ]dA pa(A)P (A, y)) (17)
. y y -0, /2 ; .
P=i (¢ (2. %)+ (w2 ) —[ _n/2+fgs} Apsl(A>¢<A,y)>. (18)

Solving (16) numerically, the dispersion relation for the elementary spin excitations was
obtained. The results for = 2 andn = 0.45 are shown in figure 3. The results for
other parameters do not change in an essential manner, ndmedpin excitation is always
gapful The spin gap as a function ¢f is also shown in figure 4 and one can see that the
gap increases as holes are doped.

To study the effect of the parity-breaking term, we calculated the spin—spin correlations
(S7S;) for the parity-unbroken Hamiltoniartt,;, — 3, n(Siniy1 — n;Sj,1) [15] by a
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10 I

AE

|
-1 -P 0
P
Figure 3. Dispersion of the elementary excitations in the spin sector/fer 2 andn = 0.45.
Sufficiently many points in the continuous spectrum are shown. The momeRtisiperiodic

with period 2r. There is no gapless point. Note that the momen#irfor the elementary spin
excitation is restricted in{ P,,, P,,], where P,, depends ory andn.

Spin Gap

Figure 4. Spin gap as a function gf. Forn = 1, the spin gap of our model reduces to that of
the XX Z spin chain (see equation (1)) [14].

numerical technique. The results are shown in figure 5 and they indicate that the correlation
decays exponentially. Hence, there is still a spin gap. Thus, one of the novel properties
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Figure 5. Spin—spin correlations on a logarithmic scale for the parity-unbroken Hamiltonian
Hery =2 n(Siniy1—niS7, 1) The results are obtained by numerical diagonalizatioh ef 12
systems ford) N =10,y =15 b) N =8,y =15and €) N =2,y =2.0.

in the Hamiltonian (1),spin gap’, is preserved without the parity-breaking term. In other
words, the parity-breaking term st relevant for thespin gap

5. Correlation functions

Consider a field-theoretic description of the low-lying excitations. Since the dispersion for
the low energy charge sector is approximately linear for @ < 1, and the gapful spin
sector is irrelevant for the low-energy behaviour, we can expect the system can be described
by the conformal field theory [16].

Let us consider the excitations described by the density) satisfying

o /2
2rip(A) = —¢'(A, y) + [ P + /Q ]dA’p(A/)¢'(A -Ay) (19

and apply the general method of Kawakami—Yang [9] for the finite-size scaling method
[17,18]. Using the Fourier-transform technique, we rewrite (19) as

[
p(A) = 2R, (2A) + dA" 2R, (2(A — A))p(A") (20)
o_
where we have introduced the deformed Shiba—function [20] defined by

1 eimv
R = — —_—.
Q(U) 27_[ ”% 1+q2|m|

The energy is given by

Q4
E/L = 2coshy — 2zsinhy [ZRq O + dA 2Rq(—2A)p(A)] (21)
o_
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n

Figure 6. K,(n)'s are shown fory = 0.0,0.5,1.0 and 20. The broken line (fory = 0 i.e.

the ordinary supersymmetric case) denotes the data from [8]. It can be shown analytically that
K,(0) =2 andK,(1) = 3 foranyy > 0.

Table 1. Relation betweerk, and the critical exponents of the correlation functions.

Correlations Exponents

2ke SDW (spin density wave) Exponential decay
2ke CDW (charge density wave) K,

SS (singlet superconductivity) /K,

TS (triplet superconductivity) Exponential decay
4kr CDW (charge density wave) K,

Thanks to (20) and (21), we can immediately apply the general argument and the results
are: (i) the charge sector can be described byctke 1 bosonic conformal field theory

i.e. it belongs to the universality class calltte Tomonaga—Luttinger liqujd(ii) the
compactification radius [19] is given by= £(Q), where thedressed chargé&(A) satisfies

EAN) =1+ f?QdA/ 2R, (2(A — A"))&(n), and Q is determined by

Y /2
[/ +/ ]dAp(A):N/Z.
—/2 0 L

As usual, we parametrizeby K, = r2/2. The equation fo was solved numerically
and K, as functions of: are shown in figure 6. The relations betwekp and the critical
exponents are shown in table 1 [21,22]. As longyast O, the singlet-superconducting
correlation is dominant whel, > 1 in the low density region (high doping). However, for
the usual supersymmetric cage=£ 0), the superconducting correlation cannot be dominant
in any filling [9] as seen in figure 6. This indicates that deformmedl models including
ours may be more appropriate to study superconducting mechanisms than the ardinary
model.
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