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Japan
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Abstract. A variant of the one-dimensionalt-J model with anisotropic spin interaction is
studied by the nested algebraic Bethe ansatz method. The gapless charge excitations and the
gapful spin excitations are obtained. It is shown that the singlet-superconducting correlation
dominates in the low-density region by applying the finite-size scaling analysis in the conformal
field theory.

In these years, strongly correlated electron systems have drawn much attention. It is partly
caused by the discovery of the copper–oxide high-Tc superconductors. The one-dimensional
strongly correlated electron systems play an important role in the study of them. It is partly
because some of them can be solved exactly and the non-perturbative results thus obtained
contain some of the essential properties of the strongly correlated systems.

Besides the Hubbard model [1–3], thet-J model [4] is regarded as one of the most
basic models which contains the essence of strong correlation. The Hamiltonian is

HtJ =
∑
〈i,j〉

[
− t

∑
σ=↑,↓

P(c
†
iσ cjσ + c

†
jσ ciσ )P + J

(
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i Sx
j + S

y
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j + Sz
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z
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4
ninj

)]
wheren’s are the number operators given byni = ni↑ + ni↓ = c

†
i↑ci↑ + c

†
i↓ci↓ and the spin

operators areSk
i = 1

2

∑
α,β c

†
iασ k

α,βciβ with the usual Pauli matricesσ ’s. The Gutzwiller

projectorP = ∏L
j=1(1−nj↑nj↓) restricts the Hilbert space by forbidding double occupancies

and hence represents strong correlation. In one dimension, the exact solution was obtained
for the supersymmetric case (2t = J ) [5–8] using the Bethe ansatz method. The long-
distance behaviour of the correlation functions was also investigated by applying the finite-
size scaling analysis in the conformal field theory to the excitation spectra obtained by
the Bethe ansatz method [9]. It was shown that the superconducting correlation does not
exceed the others such as the spin-density wave (SDW) and the charge-density wave (CDW)
correlations at any filling. However, the region where the superconducting correlation
is dominant was found between the low-density supersymmetric region and the ‘phase-
separated’ region (J � t) by numerical diagonalization for finite clusters [10]. Since the
numerical results have ambiguity due to the finite-size effect, it is highly desirable to have
exact results.
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In this paper, we study a one-parameter family of one-dimensional correlated electron
systems which includes the ordinary supersymmetrict-J model. The Hamiltonian is

HtJ γ =
∑

i

[
−

∑
σ
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†
i+1σ ciσ )P+2
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4
nini+1

)
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i ni+1 − niS
z
i+1) + 21ni

]
(1)

where12 − η2 = 1 and we parametrize them as1 = coshγ andη = sinhγ (γ ∈ R>0)†.
Whenγ = 0, our Hamiltonian reduces to the ordinary supersymmetrict-J model. When the
number of electrons coincides with the number of lattice sites, our model becomes thes = 1

2
XXZ spin chain. The Hamiltonian (1) commutes with the transfer matrix of the solvable
two-dimensional classical lattice model associated with the supersymmetric quantum affine
superalgebraUq(ŝl(2|1))(q = eγ ), which is a special case of the model given by Perk
and Schultz [11, 12]. Thus, one could say that the Hamiltonian is ‘q-supersymmetric’.
The ground state, the excitations and the correlation functions are obtained by the nested
algebraic Bethe ansatz method, the finite-size scaling analysis in the conformal field theory
and the numerical diagonalization for small clusters. We find that there is always a finite
excitation gap in the spin sector (‘spin gap’), and the superconducting correlation dominates
in the low-density region in contrast to the ordinary supersymmetrict-J model. In our study,
we encounter the problem of finding suitable distributions of the roots of the Bethe ansatz
equation which correspond to the low-energy excitations. For the usual supersymmetrict-J
model, an ansatz was proposed for the problem and the validity was confirmed by comparing
the results with those from numerical studies [5–8]. An ansatz is also proposed in our case
and the validity is established by the help of the numerical-diagonalization technique.

The third term of the Hamiltonian (1) breaks the parity invariance. This parity-breaking
term is necessary for the sake of the integrability. The relation between the spin gap and the
parity-breaking term is clarified in our study. It is investigated by diagonalizing the system
without the parity-breaking term numerically. It is confirmed that the spin gap exists even
for the system without the parity-breaking term. This means that the spin gap is not a
special feature of the exactly solvable case but it may happen generally for non-integrable
cases.

This article is organized as follows. In section 1, the Bethe ansatz equations are given.
The ground state is obtained in section 2, the charge and the spin excitations are studied in
section 3 and 4. The critical exponents of correlation functions are discussed in section 5.

After finishing this work, the authors noticed the works by Barievet al [23–25] in which
the critical exponents of the anisotropict-J model were obtained by the Bethe ansatz. They
used the same hypothesis as ours in solving the Bethe ansatz equations. In their papers,
the validity of the hypothesis is not discussed. In this work, however, we have confirmed
this hypothesis by using the numerical-diagonalization technique. Moreover, the study of
the Hamiltonian without the parity-breaking term is not discussed in their works, which
cannot be done by the Bethe ansatz technique. We investigated this problem by numerical
diagonalization for small clusters.

† The Hamiltonian (1) can be transformed to that for the dopedXY -model with broken parity: HXY =∑
i [−

∑
σ P(c

†
iσ ci+1σ + c

†
i+1σ ciσ )P + 2(Sx

i Sx
i+1 + S

y

i S
y

i+1) − (eγ ni↑ni+1↓ + e−γ ni↓ni+1↑)].
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1. Bethe ansatz equations (BAEs)

The diagonalization of the Hamiltonian (1) with periodic boundary condition reduces to
solving the coupled algebraic equations (BAEs) derived by the nested algebraic Bethe ansatz
technique. They are(

sin(pj + i
2γ )

sin(pj − i
2γ )

)L

= (−1)N
M∏

β=1

sin(pj − 3β + i
2γ )

sin(pj − 3β − i
2γ )

j = 1, 2, . . . , N (2)

N∏
j=1

sin(3α − pj + i
2γ )

sin(3α − pj − i
2γ )

= −
M∏

β=1

sin(3α − 3β + iγ )

sin(3α − 3β − iγ )
α = 1, 2, . . . , M (3)

whereL is the number of lattice sites,N is the number of electrons,M is the number of
down-electrons (magnons),p’s are the quasi-momenta of electrons and3’s are the magnon
rapidities [13].

Hereafter we take the following ansatz for the ground state and the elementary
excitations:3’s are one-strings{3α ∈ R|α = 1, . . . , M} andp’s consist of the one-strings
{pj = uj ∈ R|j = 1, . . ., N − 2M} and the two-strings{p±

α = 3α±iγ /2|α = 1, . . ., M}.
Note that the real parts of the two-strings coincide with the magnon rapidities and, if
M = N/2, there are no degrees of freedom for one strings of the quasi-momenta. This is
essentially the same ansatz established in [6–8]. In our case, however,3’s andu’s are in
the interval [−π

2 , π
2 ] due to the periodicity of the BAEs (2), (3). By taking the logarithm

of the BAEs, we have

Lφ(uj ,
γ

2
) = 2π iIj +

M∑
β=1

φ
(
uj − 3β,

γ

2

)
j = 1, . . . , N − 2M (4)

Lφ(3α, γ ) = 2π iJα +
N−2M∑
j=1

φ
(
3α − uj ,

γ

2

)
+

M∑
β=1

φ(3α − 3β, γ ) α = 1, . . . , M

(5)

whereφ(z, α) ≡ log sin(z+iα)

sin(z−iα)
†, and{Ij |j = 1, 2, . . . , N − 2M} is a set of integers (or half-

odd integers) ifM is even (or odd) and the set{Jα|α = 1, 2, . . . , M} is a set of integers (or
half-odd integers) ifN + M + 1 is even (or odd). We order the quantum numbersI ’s and
J ’s according toIj > Ij+1 andJα > Jα+1.

In the thermodynamic limitL, N → ∞, the distributions of3’s can be described by
the continuous density given byLρ(3α) = limL,N→∞ 1/(3α+1 − 3α). The energy and
momentum up to O(1) are

E = i sinhγ

N∑
j=1

φ′
(

pj ,
γ

2

)
= i sinhγ

(
L

∫
d3′ ρ(3′)φ′(3′, γ ) +

N−2M∑
j=1

φ′
(

uj ,
γ

2

))
(6)

and

P = i
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j=1

φ
(
pj ,

γ

2

)
= i L

∫
d3′ ρ(3′)φ(3′, γ ) + i

N−2M∑
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φ
(
uj ,

γ

2

)
. (7)

The integral intervals in (6) and (7) will be discussed in the following sections.

† The branch of the logarithm is fixed by the requirements thatφ(0, α) = iπ , and Imφ(x, α) is a continuous
monotonic decreasing function in−π/2 < x < π/2.
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Figure 1. Ground-state energy per site as a function of electron densityn. The full lines are
obtained by solving (8). We also performed direct numerical diagonalizations of the Hamiltonian
for L = 14 with γ = 2.0, 1.0 and 0.5. The results are plotted by�, + and♦ respectively.

2. Ground state

We setN to be even for simplicity. Since the spin interaction is anti-ferromagnetic, the total
Sz for the ground state is expected to be zero. This can be achieved by settingM = N/2,
i.e. for the sector without one-stringspj = uj . We also require that the momentumP to
be zero. We propose the following ansatz forJ ’s: the distributions ofJ ’s for the ground
state is restricted asJmax > |Jα| > Jmin, whereJmax = L−M−1

2 andJmin = L−2M+1
2 .

In the thermodynamic limit, we assume that3’s are distributed only in the regions
[−π/2, −Qg] and [Qg, π/2] in accordance with the distribution of the quantum numbers
J ’s. BAEs (4) and (5) are reduced to

2π iρg(3) = −φ′(3, γ ) +
[∫ −Qg

−π/2
+

∫ π/2

Qg

]
d3′ ρg(3

′)φ′(3 − 3′, γ ) (8)

whereQg is determined by[∫ −Qg

−π/2
+

∫ π/2

Qg

]
d3 ρg(3) = N/2

L
≡ n

2
.

The ground-state energyEg is given by

Eg = iLsinhγ

[∫ −Qg

−π/2
+

∫ π/2

Qg

]
d3 ρg(3)φ′(3, γ ). (9)

These equations can be solved numerically for arbitrary fillingn. The results are given in
figure 1.
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3. Charge excitations

The charge excitations are those caused by the replacements of the3’s while keeping
M = N/2 namelySz remains to be zero. Thus the elementary excitations for the charge
sector consists in making a jump (hole) at the pointJαh

and putting a quantum numberJαp

at a previously unoccupied region [7, 8]. In the thermodynamic limit, BAEs (4) and (5) are
reduced to

2πiρc(3) = −φ′(3, γ ) − 2π i

L
δ(3 − 3h) + 1

L
φ′(3 − 3p, γ )

+
[∫ −Qc

−π/2
+

∫ π/2

Qc

]
d3′ ρc(3

′)φ′(3 − 3′, γ ) (10)

retaining terms up to O(L−1), where3p and3h denote the position of the hole and particle
in the sea of two strings associated with the quantum numberJαh

andJαp
respectively.Qc

is determined by[∫ −Qc

−π/2
+

∫ π/2

Qc

]
d3 ρc(3) = (N − 2)/2

L
.

For convenience, we decomposeρc(3) into the regular part and the singular part as
ρc(3) = ρc0(3) − 1

L
ρc1(3) − 1

L
δ(3 − 3h), whereρc0(3) satisfies

2π iρc0(3) = −φ′(3, γ ) +
[∫ −Qc

−π/2
+

∫ π/2

Qc

]
d3′ ρc0(3

′)φ′(3 − 3′, γ ). (11)

For ρc1(3), we have

2π iρc1(3) = φ′(3 − 3h, γ ) − φ′(3 − 3p, γ )

+
[∫ −Qc

−π/2
+

∫ π/2

Qc

]
d3′ ρc1(3

′)φ′(3 − 3′, γ ). (12)

The excitation energy1E from the ground state and the momentumP are given by

1E = i sinhγ

(
φ′(3p, γ ) − φ′(3h, γ ) −

[∫ −Qc

−π/2
+

∫ π/2

Qc

]
d3 ρc1(3)φ′(3, γ )

)
(13)

P = i

(
φ(3p, γ ) − φ(3h, γ ) −

[∫ −Qc

−π/2
+

∫ π/2

Qc

]
d3 ρc1(3)φ(3, γ )

)
. (14)

Solving (12) numerically, the dispersion relation for the elementary charge excitations was
obtained. The results forγ = 2 andn = 0.45 are shown in figure 2. The results for other
parameters do not change in an essential manner, namelythe charge excitation is always
gapless.

4. Spin excitations

The spin excitations can be considered as excitations coming from destroying the two-strings
p±’s and creating one-stringsu’s. To study the elementary ones, let us consider the case
of M = N/2 − 1 magnons. We assume that, in the sea of the quantum numbersJ ’s there
are no jumps [7, 8]. Then, in the thermodynamic limit, BAE (5) becomes

2π iρs(3) = −φ′(3, γ ) + 1

L
φ′

(
3 − u1,

γ

2

)
+ 1

L
φ′

(
3 − u2,

γ

2

)
+

[∫ −Qs

−π/2
+

∫ π/2

Qs

]
d3′ ρs(3

′)φ′(3 − 3′, γ ) (15)
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Figure 2. Dispersion of the elementary excitations in the charge sector forγ = 2 andn = 0.45.
Sufficiently many points in the continuous spectrum are shown. The momentumP is periodic
with period 2π . The gapless points are atP = 0, 2kF and 2π − 2kF .

whereu1 andu2 are one-string quasi-momenta, andQs is determined by[∫ −Qs

−π/2
+

∫ π/2

Qs

]
d3 ρs(3) = (N − 2)/2

L
.

It is convenient to decomposeρs(3) into contributions of O(1) and O(L−1) as ρs(3) =
ρs0(3) − 1

L
ρs1(3), whereρs0(3) satisfies the same equation as (11) obtained by replacing

all the suffixesc to s. Then the integral equation forρs1(3) is obtained as

2π iρs1(3) = −φ′
(
3 − u1,

γ

2

)
− φ′

(
3 − u2,

γ

2

)
+

[∫ −Qs

−π/2
+

∫ π/2

Qs

]
d3′ ρs1(3

′)φ′(3 − 3′, γ ). (16)

The excitation energy1E from the ground state and the momentumP are

1E = i sinhγ

(
φ′

(
u1,

γ

2

)
+ φ′

(
u2,

γ

2

)
−

[∫ −Qs

−π/2
+

∫ π/2

Qs

]
d3 ρs1(3)φ′(3, γ )

)
(17)

P = i

(
φ

(
u1,

γ

2

)
+ φ

(
u2,

γ

2

)
−

[∫ −Qs

−π/2
+

∫ π/2

Qs

]
d3 ρs1(3)φ(3, γ )

)
. (18)

Solving (16) numerically, the dispersion relation for the elementary spin excitations was
obtained. The results forγ = 2 and n = 0.45 are shown in figure 3. The results for
other parameters do not change in an essential manner, namelythe spin excitation is always
gapful. The spin gap as a function ofγ is also shown in figure 4 and one can see that the
gap increases as holes are doped.

To study the effect of the parity-breaking term, we calculated the spin–spin correlations
〈Sz

i S
z
j 〉 for the parity-unbroken HamiltonianHtJ γ − ∑

i η(Sz
i ni+1 − niS

z
i+1) [15] by a
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Figure 3. Dispersion of the elementary excitations in the spin sector forγ = 2 andn = 0.45.
Sufficiently many points in the continuous spectrum are shown. The momentumP is periodic
with period 2π . There is no gapless point. Note that the momentumP for the elementary spin
excitation is restricted in [−Pm, Pm], wherePm depends onγ andn.

Figure 4. Spin gap as a function ofγ . For n = 1, the spin gap of our model reduces to that of
the XXZ spin chain (see equation (1)) [14].

numerical technique. The results are shown in figure 5 and they indicate that the correlation
decays exponentially. Hence, there is still a spin gap. Thus, one of the novel properties
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Figure 5. Spin–spin correlations on a logarithmic scale for the parity-unbroken Hamiltonian
HtJ γ −∑

i η(Sz
i ni+1−niS

z
i+1). The results are obtained by numerical diagonalization ofL = 12

systems for (a) N = 10, γ = 1.5, (b) N = 8, γ = 1.5 and (c) N = 2, γ = 2.0.

in the Hamiltonian (1),‘spin gap’, is preserved without the parity-breaking term. In other
words, the parity-breaking term isnot relevant for thespin gap.

5. Correlation functions

Consider a field-theoretic description of the low-lying excitations. Since the dispersion for
the low energy charge sector is approximately linear for 0< n < 1, and the gapful spin
sector is irrelevant for the low-energy behaviour, we can expect the system can be described
by the conformal field theory [16].

Let us consider the excitations described by the densityρ(3) satisfying

2π iρ(3) = −φ′(3, γ ) +
[∫ Q−

−π/2
+

∫ π/2

Q+

]
d3′ ρ(3′)φ′(3 − 3′, γ ) (19)

and apply the general method of Kawakami–Yang [9] for the finite-size scaling method
[17, 18]. Using the Fourier–transform technique, we rewrite (19) as

ρ(3) = 2Rq(23) +
∫ Q+

Q−
d3′ 2Rq(2(3 − 3′))ρ(3′) (20)

where we have introduced the deformed Shiba–function [20] defined by

Rq(v) = 1

2π

∑
m∈Z

eimv

1 + q2|m| .

The energy is given by

E/L = 2coshγ − 2πsinhγ

[
2Rq(0) +

∫ Q+

Q−
d3 2Rq(−23)ρ(3)

]
. (21)
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Figure 6. Kρ(n)’s are shown forγ = 0.0, 0.5, 1.0 and 2.0. The broken line (forγ = 0 i.e.
the ordinary supersymmetric case) denotes the data from [8]. It can be shown analytically that
Kρ(0) = 2 andKρ(1) = 1

2 for any γ > 0.

Table 1. Relation betweenKρ and the critical exponents of the correlation functions.

Correlations Exponents

2kF SDW (spin density wave) Exponential decay
2kF CDW (charge density wave) Kρ

SS (singlet superconductivity) 1/Kρ

TS (triplet superconductivity) Exponential decay
4kF CDW (charge density wave) 4Kρ

Thanks to (20) and (21), we can immediately apply the general argument and the results
are: (i) the charge sector can be described by thec = 1 bosonic conformal field theory
i.e. it belongs to the universality class calledthe Tomonaga–Luttinger liquid, (ii) the
compactification radius [19] is given byr = ξ(Q), where thedressed chargeξ(3) satisfies
ξ(3) = 1 + ∫ Q

−Q
d3′ 2Rq(2(3 − 3′))ξ(η), andQ is determined by[∫ −Q

−π/2
+

∫ π/2

Q

]
d3 ρ(3) = N/2

L
.

As usual, we parametrizer by Kρ = r2/2. The equation forξ was solved numerically
andKρ as functions ofn are shown in figure 6. The relations betweenKρ and the critical
exponents are shown in table 1 [21, 22]. As long asγ 6= 0, the singlet-superconducting
correlation is dominant whenKρ > 1 in the low density region (high doping). However, for
the usual supersymmetric case (γ = 0), the superconducting correlation cannot be dominant
in any filling [9] as seen in figure 6. This indicates that deformedt-J models including
ours may be more appropriate to study superconducting mechanisms than the ordinaryt-J
model.
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